α - and β -Na₂UO₄: Structural and Thermochemical Relationships E. H. P. Cordfunke Netherlands Energy Research Foundation ECN, Petten, The Netherlands and ## D. J. W. IJdo Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands Received May 3, 1994; in revised form July 12, 1994; accepted July 15, 1994 The crystal structures of α - and β -Na₂UO₄ have been determined by neutron powder diffraction. In α -Na₂UO₄ edge-shared UO₆ octahedra extend in chains along the c axis. In β -Na₂UO₄ the UO₆ octahedra share corners with each other to form two-dimensional perovskite layers. The octahedra are tilted around both the b and c axes of the unit cell, α - and β -Na₂NpO₄ probably have the same structures. The enthalpy of transition of α -Na₂UO₄ to β -Na₂UO₄ has been determined both by DTA measurements and by calorimetric measurements. The unusually high value obtained can be explained from a structural point of view. © 1995 Academic Press, Inc. ## INTRODUCTION Because sodium is used as a coolant in fast breeder reactors much research has been done on the system Na-U-O. The compounds Na₂U₂O₇, Na₂UO₄ (α and β), Na₄UO₅, NaUO₃, and Na₄UO₅ (α and β) are all well known. Cordfunke *et al.* (1) published the thermodynamic properties of Na₂UO₄, Na₂U₂O₇, and NaUO₃. However, only the crystal structures of β -Na₄UO₅ (2) and NaUO₃ (3) are known in any detail. A review of the structural information on Na_2UO_4 covering the years up to 1974 is given by Keller (4). The experimental evidence for the structures given therein is quite meager, and not in agreement with the powder diffraction diagrams given by Cordfunke and Loopstra (5). The lattice parameters of α - and β -Na₂UO₄ (5) and of some related compounds are given in Table 1. Recently, Gasperin (6) reported the crystal structure of β -Na₂UO₄ with space group Fmmm, as obtained from single crystal X-ray diffraction. In agreement with the literature (4) the structure is related to the K_2NiF_4 type (7); however, the Na-O distances are unreliable. Gasperin concluded that Na and O are delocalized and the structure contains domains with space group $P2_1/b$. The structure determination of β -Na₂UO₄ is important for the understanding of the tilting of BO_6 octahedra in the oxides A_2BO_4 , related to the K_2NiF_4 structure type containing a small A ion as in Pr_2NiO_4 (8), and $La_{1-x}Ba_xCuO_4$ (9) which are (super) conductors. ## **EXPERIMENTAL** α -Na₂UO₄ was prepared by carefully mixing stoichiometric amounts of Na₂CO₃ and U₃O₈ and heating the mixture to 1193 K in a golden crucible until the reaction was complete as described before (5). β -Na₂UO₄ was prepared from the α -compound by heating at 1220 K in a closed platinum capsule in order to avoid decomposition to Na₂U₂O₇. The enthalpy of formation of β -Na₂UO₄ at 298.15 K was obtained from its enthalpy of solution in 1.5 mole dm⁻³ H₂SO₄. The details of the calorimetric measurements have been described elsewhere (1). The sample used was phase-pure, and the U content was determined titrimetrically with dichromate and found to be 68.50 \pm 0.06% (calculated as 68.40%). The X-ray diffraction patterns were made on single-coated film with a focusing Guinier camera (FR 552, Enraf-Nonius, Delft, The Netherlands) using $CuK\alpha_1$ radiation ($\lambda = 1.5405981(3)$ Å) with α -SiO₂ (hexagonal, a = 4.9133(2) Å, c = 5.4053(4) Å) as an internal standard. The neutron diffraction measurements were taken on the powder diffractometer at the HFR in Petten. Neutrons with $\lambda = 2.57176(3)$ Å were obtained using the beam reflected from the hkl (111) planes of a single crystal of copper, reducing the λ/n contamination to less than 0.1% by means of a pyrolitic graphite filter. Soller slits with a horizontal divergence of 30' were placed between the reactor and the monochromator and in front of the four ³He counters. The sample holder (i.d. = 1.43 cm) consisted of a V tube closed with Cu plugs fitted with O- TABLE 1 Lattice Parameters (Å) of Related Compounds from the Literature | Compound | a | ь | c | Reference | |--|----------|-----------|-----------|-----------| | Sr ₂ PbO ₄ | 6.159(1) | 10.078(2) | 3.502(1) | (14) | | α-Na ₂ UO ₄ | 5.734(1) | 9.769(1) | 3.498(1) | $(5)^a$ | | α -Na ₂ NpO ₄ | 5.705(5) | 9.685(5) | 3.455(5) | $(20)^a$ | | La ₂ CoO ₄ | 5.490 | 5.488 | 12.548 | (15) | | β-Na ₂ UO ₄ | 5.807(1) | 5.979(1) | 11.724(2) | (5) | | β-Na ₂ UO ₄ | 5.802(2) | 5.969(2) | 11.699(3) | (6) | | β-Na ₂ NpO ₄ | 5.785(5) | 5.936(5) | 11.65(5) | (20) | a and b axes interchanged. rings. The diffraction pattern was taken at 300 K and analyzed by means of Rietveld's profile refinement technique (10). Absorption correction was applied according to Weber (11), $\mu R = 0.066$. For the coherent scattering lengths we used the values for O 5.805, Na 3.63, and U 8.417 fm (12). For the refinement of the neutron diffraction data the program DBW 3.2S, version 8802 was used (13). The variables include a scale factor, five background parameters, three half-width parameters defining the Gaussian-like peak shape, the counter zero, an asymmetry parameter, the unit cell dimensions, atomic position parameters, and thermal parameters. A scale factor for the small contribution of the V sample holder was also refined. # STRUCTURE DETERMINATION Data collection conditions and refinement details including least-squares refined lattice parameters using X-ray Guinier powder data are summarized in Table 2. The lattice parameters of α -Na₂UO₄ (Table 1) suggest a close relationship to the structure of Sr₂PbO₄ (14), so this structure could be used on the trial model. The X-ray powder diffraction data of β -Na₂UO₄ from Cordfunke and Loopstra (5) ruled out the space group *Fmmm* (6), and are almost consistent with the space group *Abma* as found for La₂CoO₄ (15). With the subgroup *Pbca* a successful model could be derived where the UO₆ octahedra are tilted around [110] as in La₂CoO₄ as well as around [001] of the K₂NiF₄ archetype. This model is in full agreement with the X-ray diffraction data (5). Atomic parameters are listed in Table 3. Selected bond distances and angles are listed in Table 4. The agreement between the observed and calculated profile is shown for α - and β -Na₂UO₄ in Fig. 1. ## THE ENTHALPY OF THE PHASE TRANSITION The enthalpy of formation of a phase-pure sample of β -Na₂UO₄ has been determined calorimetrically at 298.15 TABLE 2 Data Collection Condition and Refinement Details for α - and β -Na₂UO₄ | | Compound | | | | | |------------------------------------|---|---------------|-----------------------------------|--------------------|--| | Parameters | α -Na ₂ UO ₄ | | β-Na ₂ UO ₄ | | | | Space group | Pbam | | Pbca | | | | | Neutron | X-ray Guinier | Neutron | X-ray Guinier | | | Diffraction λ (Å) | 2.57176(3) | 1.540598 | 2.57176(3) | 1.540598 | | | Cell parameters | | | | | | | a (Å) | 9.7623(3) | 9.7582(3) | 5.8079(3) | 5.8053(2) | | | b (Å) | 5.7287(2) | 5.7273(3) | 5.9753(3) | 5.9732(2) | | | c (Å) | 3.4956(1) | 3.4949(1) | 11.7179(6) | 11.7118(4) | | | $V(\mathring{\mathbf{A}})^3$ | 195.496(11) | 195.32(1) | 406.650(34) | 406.12(1) | | | Z | 2 | | 4 | | | | $D_r(\text{Mg}\cdot\text{m}^{-3})$ | 5.912 | | 5.684 | | | | 2Θ range (°) | 5-155 | 17-66 | 5-153 | 17-66 | | | Step size (°) | 0.1 | | 0.1 | | | | $R_{\mathfrak{p}}$ | 2.14 | | 1.92 | | | | $R_{ m wp}^{'}$ | 2.81 | | 2.54 | | | | $R_{\rm E}$ | 2.00 | | 1.67 | | | | s^- | 1.41 | | 1.52 | | | | D-WD | 1.31 | | 1.22 | | | | No. of parameters refined | 26 | | 31 | | | | Independent reflections | 57 | 28 | 93 | 29 | | | SS/FOM | F28 = 110(0.005,5) | | | F29 = 80(0.005,72) | | TABLE 3 Fractional Atomic Coordinates and Thermal Parameters (Å³) of α - and β -Na₂UO₄ at 295 K | Compound | х | у | z | \boldsymbol{B} | |-----------------------------------|--------------|-----------|-----------|------------------| | α-Na ₂ UO ₄ | Na 0.1818(4) | 0.4436(4) | 0.5 | 1.13(2) | | | U 0 | 0 | 0 | 0.36(4) | | | O1 0.1760(2) | 0.1428(3) | 0 | 0.76(5) | | | O2 0.0547(2) | 0.2111(3) | 0.5 | 0.78(5) | | β-Na ₂ UO ₄ | Na 0.0026(6) | 0.0550(7) | 0.3363(4) | 1.39(11) | | | U 0 | 0 | 0 | 0.30(7) | | | O1 0.2947(5) | 0.2080(4) | 0.0450(2) | 0.94(8) | | | O2 0.1077(3) | 0.0320(5) | 0.1534(2) | 1.13(8) | | | | | | | K from its enthalpy of solution in 1.5 mol \cdot dm⁻³ H₂SO₄. The thermochemical cycle from which $\Delta_t H^{\circ}$ (298.15 K) was calculated, is given for α-Na₂UO₄ in Table 5 of the previous publication (1). For the enthalpy of solution in this solvent the value $-(197.42 \pm 0.54) \text{ kJ} \cdot \text{mol}^{-1} \text{ was}$ obtained, and from this value we obtain for \(\beta\)-Na₂UO₄ $\Delta_f H^{\circ}(298.15 \text{ K}) = -(1882.85 \pm 1.13) \text{ kJ} \cdot \text{mol}^{-1}$. This value is in good agreement with the value $-(1884.6 \pm 3.6)$ kJ·mol⁻¹ selected by Grenthe et al. (16). However, in view of the uncertainties in the auxiliary values of the various cycles, as already noted by the latter authors, we here prefer to calculate the enthalpy of transition of $\alpha \rightarrow$ β-Na₂UO₄ as the difference between the enthalpies of formation of α - and β -Na₂UO₄ as determined in the same medium. We thus obtain $\Delta_{tr}H^{\circ}$ (298.15 K) = $-(1882.85 \pm 1.13) + (1897.27) = +(14.4 \pm 1.5) \text{ kJ} \cdot \text{mol}^{-1}$. For the transition temperature the value of about 1193 K has been reported (5) based on high-temperature X-ray diffraction. This temperature has been confirmed in the present study by DTA measurements at various heating rates $(1, 2, 5, \text{ and } 10 \text{ K} \cdot \text{min}^{-1})$. It must be noted that this transition is reversible and very slow near the transition temperature. The enthalpy of transition calculated from the DTA experiments is $(24.4 \pm 0.5) \text{ kJ} \cdot \text{mol}^{-1}$. This value is in perfect agreement with the enthalpy of transition obtained from drop-calorimetric enthalpy-increment measurements by Frederickson and O'Hare (17). The results of the measurements of the latter authors have been recalculated. For α-Na₂UO₄ we used their values, and applied the constraints $\{H^{\circ}(T) - H^{\circ}(298.15 \text{ K})\} = 0$ at T = 298.15K and C_n° (298.15 K) = 146.65 J·mol⁻¹ K⁻¹ (18). We thus obtain (298.15) - 1165 K): $${H^{\circ}(T) - H^{\circ} (298.15 \text{ K})}/{J \cdot \text{mol}^{-1}} = 162.5688 (T)$$ + $12.92942 \times 10^{-3} (T)^2 + 21.00428 \times 10^5 (T)^{-1} + 56,664.1.$ In the case of β -Na₂UO₄ the sample dropped irreversibly, and consequently, the measured results should be increased with the enthalpy of transition at 298.15 K for which we take the value $14.4 \text{ kJ} \cdot \text{mol}^{-1}$ from the present study. With this value as the constraint for $\{H^{\circ}(T) - H^{\circ} (298.15 \text{ K})\}$ at T = 298.15 K we obtain for β -Na₂UO₄ (298.15 - 1273 K): $${H^{\circ}(T) - H^{\circ}(298.15 \text{ K})}/{J \cdot \text{mol}^{-1}} = 70.4254 (T)$$ + $59.7378 \times 10^{-3} (T)^2 - 102.0570 \times 10^5 (T)^{-1} + 22,322.$ From the two enthalpy increment equations we obtain at the transition temperature $\Delta_{tr}H^{o}(1193 \text{ K}) = 25.40 \text{ kJ} \cdot \text{mol}^{-1}$. ## DISCUSSION In α -Na₂UO₄, edge-shared UO₆ octahedra extend in chains along [001]. The chains are held together by NaO₇ polyhedra (Fig. 2). The U-O1 distances are shorter than the U-O2 distances in agreement with the underbonding of O1 (U + 5 Na) compared with O2 (2U + 3 Na). The same feature is found in the isostructural compounds Sr₂PbO₄ and Ca₂SnO₄ (14), but is less pronounced. The structure of β -Na₂UO₄ (Fig. 3) can be derived from the K₂NiF₄ structure type by tilting of the UO₆ octahedra. The octahedra share corners with each other to form a two-dimensional perovskite-like array. Between these layers the Na ions are located, Na and unshared O atoms form rock salt layers in the archetype. In the ideal A_2BO_4 (K₂NiF₄ type) the void for A has the same size as an O atom. If the radius of A is too small, the void is reduced in size by tilting of the octahedra. The analysis of the tilt uses two independent rotation angles, ϕ about [110] and ω about [001] of the archetype, interactions between the two being negligibly small. The rotation ϕ lowers the symmetry from I4/mmm of the archetype to Bbmb (66) or Abma (64) depending on the rotations of the second TABLE 4 Selected Atomic Distances (Å) and Angles (°) in α- and β-Na₂UO₄ at 295 K | α-Na ₂ UO ₄ | Na-201 | 2.455(2) | U-201 | 1.903(2) | |-----------------------------------|--------|----------|------------------|-----------| | | Na-2O1 | 2.507(3) | U-4O2 | 2.191(1) | | | Na-O2 | 2.335(3) | | • | | | Na-O2 | 2.666(4) | O1-U-O2 | 90.99(6) | | | Na-O2 | 2.721(4) | O2-U - O2 | 105.79(5) | | β-Na ₂ UO ₄ | Na-01 | 2.406(5) | U-201 | 2.178(3) | | | Na-O1 | 2.611(5) | U-201 | 2.180(3) | | | Na-O1 | 2.877(5) | U-2O2 | 1.913(2) | | | Na-O2 | 2.288(5) | | ` ′ | | | Na-O2 | 2.355(4) | O1-U-O1 | 91.81(10) | | | Na-O2 | 2.553(5) | O1~U-O2 | 91.58(9) | | | | | O1-U-O2 | 91.81(10) | FIG. 2. (a) Projection of α -Na₂UO₄ along the c axis; (b) structure of α -Na₂UO₄. layer at z=1/2. The unit cell has the lattice parameters $a\approx a'\sqrt{2}\cos\phi$, $b\approx a'\sqrt{2}$, $c\approx c'$, in which a' and c' are the lattice parameters of the tetragonal archetype. The rotation ω again lowers the symmetry. The two possibilities from Abma are Pbca or A2/b11. The rotations reduce the coordination of Na from 9 in the archetype to 6 in the β -Na₂UO₄ structure. From the O1 atomic coordinates the rotation angles can be calculated: $$\omega = \frac{1}{2} \left[\arctan\{4x(01) - 1\} a/b + \arctan\{1 - 4y(01)\} b/a \right] = 9.83(2)^{\circ}$$ $$\phi = \arctan[(2z(01)c\{(1/2a)^2 + [1/2 - 2y(01)b]^2\}^{-1/2}] = 19.6g(2)^{\circ}.$$ The result is shown in Fig. 3. The layers β -Na₂UO₄ are folded as was already assumed by Hoekstra (19) from infrared spectroscopy. The sample of β -Na₂UO₄ shows a relatively high background in the neutron-diffraction experiment compared to that of α -Na₂UO₄. This is probably due to some nonordered material, formed during the phase transition. A trace of Na₂O could be detected as a FIG. 3. The 2d sheet of octahedra at $z \approx 0$ of β -Na₂UO₄; (b) structure of β -Na₂UO₄. FIG. 1. Observed (dots) and calculated (full line) neutron diffraction profiles of (a) α -Na₂UO₄ and (b) β -Na₂UO₄. Tick marks below the profiles indicate the positions of the Bragg reflections. Difference (observed – calculated) curve appears at the bottom of the plot. second phase. The present structure determination of β -Na₂UO₄ uses a subgroup of the space group Fmmm accepted by Gasperin (6). Probably Gasperin overlooked a set of weak reflections permitted in space group Pbca. The conclusions of Gasperin that Na and O atoms are delocalized is not supported by the current diffraction experiment. The enthalpy of transition of $\alpha \to \beta\text{-Na}_2\text{UO}_4$ has an unusually high value. For instance, in $\text{Na}_2\text{U}_2\text{O}_7$ we measured an enthalpy of transition of only 2.7 kJ·mol⁻¹ at 1322 K which is a more common value for a phase transition in uranium compounds. The high value for the enthalpy of transition can be understood from the rigid structure of $\alpha\text{-Na}_2\text{UO}_4$ in which coupling of the polyhedra takes place by sharing edges. At the transition temperature, the more open $\beta\text{-Na}_2\text{UO}_4$ structure causes a considerable increase in entropy, and hence a high value for the enthalpy of transition ($\Delta S = \Delta H/T$). The lattice parameters of α - and β -Na₂NpO₄ (20) are similar to those of Na₂UO₄ (Table 1). Combined with the fact that the radius of Np⁶⁺ is only slightly smaller than the radius of U⁶⁺ in six-coordination (0.72 and 0.73 Å, respectively) (21), this leads to the conclusion that Na₂NpO₄ has the same crystal structures as Na₂UO₄. ## **ACKNOWLEDGMENTS** The authors thank Professor E. Frikkee for providing the neutron diffraction patterns and A. Bontenbal, A. Booij, M. E. Huntelaar, A. Scheele, V. Smit-Groen, and P. van Vlaanderen for experimental assistance. ## REFERENCES - 1. E. H. P. Cordfunke, R. P. Muis, W. Ouweltjes, H. E. Flotow, and P. A. G. O'Hare, J. Chem. Thermodyn. 14, 313 (1982). - 2. H. R. Hoekstra and S. Siegel, J. Inorg. Nucl. Chem. 26, 693 (1964). - A. M. Chippindal, P. G. Dickens, and W. T. A. Harrison, J. Solid State Chem. 78, 256 (1989). - C. Keller, "Gmelin Handbuch der Anorganischen Chemie, 55 Uran C3." Springer-Verlag, New York/Berlin, 1975. - E. H. P. Cordfunke and B. O. Loopstra, J. Inorg. Nucl. Chem. 33, 2427 (1971). - 6. M. Gasperin, J. Solid State Chem. 60, 316 (1985). - 7. D. Balz and K. Plieth, Z. Elektrochem. 59, 545 (1955). - D. J. Buttrey, J. D. Sullivan, G. Shirane, and K. Yamada, *Phys. Rev. B* 42, 3944 (1990). - 9. J. Bednorz and K. A. Muller, Z. Phys. B 64, 189 (1986). - 10. H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969). - 11. K. Weber, Acta Crystallogr. 23, 720 (1967). - 12. F. Sears, Neutron News 3, 26 (1992). - 13. D. B. Wiles and R. A. Young, J. Appl. Crystallogr. 14, 149 (1981). - 14. M. Trömel, Z. Anorg. Allg. Chem. 371, 237 (1969). - U. Lehmann and Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 470, 59 (1980). - I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Müller, C. Nguyen-Trung, and H. Wanner, "Chemical Thermodynamics. I. Chemical Thermodynamics of Uranium" (H. Wanner and I. Forest, Eds.), p. 353. North-Holland, Amsterdam, 1992. - D. R. Frederickson and P. A. G. O'Hare, J. Chem. Thermodyn. 8, 353 (1976). - 18. D. W. Osborne, H. E. Flotow, R. P. Dallinger, and H. R. Hoekstra, J. Chem. Thermodyn. 6, 751 (1974). - 19. H. R. Hoekstra, J. Inorg. Nucl. Chem. 27, 801 (1965). - C. Keller, L. Koch, and K. H. Walter, J. Inorg. Nucl. Chem. 27, 1205 (1965). - 21. R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 (1976).